

Home Search Collections Journals About Contact us My IOPscience

Double quantum transitions of Mn^{2+} in CaO

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 6 8331

(http://iopscience.iop.org/0953-8984/6/40/023)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 20:43

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 6 (1994) 8331-8334. Printed in the UK

Double quantum transitions of Mn²⁺ in CaO

S C Ke and H T Tohver

Department of Physics, University of Alabama at Birmingham, UAB Station, AL 35294, USA

Received 12 April 1994, in final form 26 May 1994

Abstract. The $\Delta M = 2$ spin transitions are forbidden in first-order perturbation theory but allowed in the second order. With electron paramagnetic resonance, we have observed such transitions for Mn^{2+} in CaO between the $M = \frac{1}{2}$ and $M = +\frac{3}{2}$ levels between the $M = -\frac{3}{2}$ and $M = +\frac{1}{2}$ levels. The intensity dependence of these lines on the energy level spacing is in good agreement with theory. In addition, we have observed weaker lines due to transitions between $M = \pm \frac{1}{2}$ and $M = \pm \frac{1}{2}$ levels.

1. Introduction

Multiple quantum transitions [1-4] occurring in the presence of a strong microwave magnetic field between unequally spaced energy levels have been previously observed in the electron paramagnetic resonance (EPR) spectra of several ions in the alkaline earth oxides—namely, Ni²⁺, Co⁺, Fe²⁺ and Mn²⁺ in cubic magnesium oxide [5, 6]. Here, we report on $\Delta M = 2$ transitions of Mn²⁺ in CaO. We investigated in detail the intensity dependence of these lines on the inequalities of the energy level spacing (figure 1).

2. Theory

The relevant Hamiltonian for the Mn²⁺ ion in an octahedral environment is given by [7]

$$H_0 = g\beta H \cdot S + \frac{1}{6}a \left[S_x^4 + S_y^4 + S_z^4 - \frac{1}{5}S(S+1) \left(3S^2 + 3S - 1 \right) \right] + AS \cdot I$$
(1)

when S and I are electron spin and nuclear spin operators. A is the hyperfine constant and a is the fine-structure constant. H is the magnetic field intensity. The nuclear Zeeman term has been omitted.

For the Mn²⁺ ion in CaO, $S = \frac{5}{2}$, $I = \frac{5}{2}$, $A = 81.7 \times 10^{-4}$ cm⁻¹ and $a = 6 \times 10^{-4}$ cm⁻¹. The energy levels $E_{(M,m)}$ with H in the [100] direction are given as follows [7]. Here, M and m are the electron and nuclear spin quantum numbers.

$$E_{\pm 1/2,m} = \pm \frac{1}{2}g\beta H + a \pm \frac{1}{2}Am + (A^2/2g\beta H_0) \{\pm \frac{35}{8} \mp \frac{1}{2} - \frac{17}{2}m\}$$
(2)

$$E_{\pm 3/2, m} = \pm \frac{3}{2}g\beta H - \frac{3}{2}a \pm \frac{3}{2}Am + \left(A^2/2g\beta H_0\right) \left\{\pm \frac{105}{8} \mp \frac{3}{2}m^2 - \frac{13}{2}m\right\}$$
(3)

$$E_{\pm 5/2, m} = \pm \frac{5}{2}g\beta H + \frac{1}{2}a \pm \frac{5}{2}Am + \left(A^2/2g\beta H_0\right) \left\{ \pm \frac{175}{8} \mp \frac{5}{2}m^2 - \frac{5}{2}m \right\}.$$
 (4)

The usual EPR spectrum due to $\Delta M = 1$ transitions between levels consists of six groups of five lines. The fivefold splitting due to the fine structure proportional to *a* while the large sixfold splitting is generated by the hyperfine interaction proportional to *A*.

0953-8984/94/408331+04\$19.50 © 1994 IOP Publishing Ltd

Figure 1. The spectra of Mn^{2+} obtained at both low and high microwave powers. The central sharp line corresponds to the F⁺ centre. The temperature is 300 K.

From first-order time dependent perturbation theory the transition probability of an excited state l due to a $\Delta M = 1$ magnetic dipole transition from an initial state n is given by

$$|a_{nl}^{(1)}(t)|^{2} = \left(g^{2}\beta^{2}H_{1}^{2}/4\hbar^{2}\right) |\langle l|S_{+}|n\rangle|^{2} \left[\left\{ \exp\left[i\left(\omega_{ln}-\omega\right)t\right]-1\right\}/\left(\omega_{ln}-\omega\right)\right|^{2} (5) \right] |\langle l|S_{+}|n\rangle|^{2} |\langle l|S_{+}|n\rangle|^{2} \right] |\langle l|S_{+}|n\rangle|^{2} |\langle l|S_{+}|$$

and second-order perturbation yields for the transition probability of an excited state due to a $\Delta M = 2$ transition

$$|a_{nm}^{(2)}(t)|^{2} = (g^{4}\beta^{4}H_{1}^{4}/16\hbar^{4})|\langle m|S_{+}|l\rangle|^{2}|\langle l|S_{+}|n\rangle|^{2}/(\omega_{ln}-\omega)^{2}|\{\exp[i(\omega_{mn}-2\omega)t] -1\}/(\omega_{mn}-2\omega)|^{2}$$
(6)

where S_{\pm} is the usual raising and lowering operator, H_1 is the microwave magnetic field at the sample and l is the intermediate state [8].

From the second-order perturbation theory, the transition from the E_n to E_m state is then allowed due to the presence of the intermediate state (l). The $\Delta M = 2$ transitions occur at microwave photon energies of half the energy separation between the m and n states. The corresponding magnetic field for a $\Delta M = 2$ transition lies halfway between the fields for n to l and l to m transitions.

First-order transition probability is proportional to H_1^2 , while in second order it varies as H_1^4 . Hence $\Delta M = 2$ transitions are only detectable at high microwave power levels. Also, the second-order transitions are proportional to $1/\Delta^2$, where $\Delta = \omega_{nl} - \omega$ (6).

3. Experimental details

The EPR spectra were taken with a Bruker Associates SRC 200 spectrometer operating at 9.76 GHz. The magnetic fields were read from this instrument's Hall probe to within $\pm 10 \ \mu$ T. The sample temperature was controlled by an Air Products model DMX-1A/15 closed cycle refrigerator.

4. Results

Figure 1 displays the spectra of Mn^{2+} obtained at both low and high microwave powers. At low power only the $\Delta M = 1$ transitions are present while at high power these $\Delta M = 1$ lines display saturation effects. At high power, the narrow intense lines are due to $\Delta M = 2$ transitions. The variation in the intensity of the $\Delta M = 2$ transitions among the six hyperfine groups is noticeable. The second-order theory (6) predicts that the amplitude of the detected lines should be proportional to H_1^4/Δ^2 , where

$$\Delta = \omega_{nl} - \omega = \frac{1}{\hbar} \Big[\frac{1}{2} \Big(E_m - E_n \Big) - \Big(E_l - E_n \Big) \Big] = \frac{1}{\hbar} \Big[\frac{1}{2} \Big(E_{1/2} - E_{-3/2} \Big) - \Big(E_{-1/2} - E_{-3/2} \Big) \Big]$$
$$= -\frac{g\beta}{4\hbar} \Big\{ \frac{5a}{g\beta} - \frac{A^2}{2g^2\beta^2 H_0} (4m) \Big\} = -\frac{g\beta}{4\hbar} (\Delta H).$$
(7)

Here *m* are the nuclear spin quantum numbers and ΔH is the magnetic field separation between the $(M_{-3/2} \rightarrow M_{-1/2})$ and $(M_{1/2} \rightarrow M_{3/2})$ transitions.

According to equation (7) the amplitude of the detected $\Delta M = 2$ lines should be proportional to $1/(\Delta H)^2$. In figure 2, the line intensities observed for $\Delta M = 2$ transitions for various nuclear quantum numbers (m) are plotted as a function of $1/(\Delta H)^2$. ΔH values for various m were determined experimentally from the magnetic field values for relevant single quantum transitions. The $\Delta M = 2$ intensity for $m = -\frac{5}{2}$ transition was set equal to unity. The observed line intensity ratios are in agreement with the predicted values.

Figure 2. The relative $\Delta M = 2$ intensity ration against $1/(\Delta H)^2$ for various *m* in figure 1. Filled circles are experimentally observed intensity ratios. The solid line is the ratio predicted by $I \propto 1/(\Delta H)^2$.

Figure 3. EPR transitions of the $m = -\frac{3}{2}$ pentad: microwave power, 190 mW; temperature, 13 K. $\Delta M =$ 1 transitions are a, $M = -\frac{3}{2} \rightarrow M = -\frac{1}{2}$, b, $M = \frac{1}{2} \rightarrow M = \frac{3}{2}$, c, $M = -\frac{1}{2} \rightarrow M = \frac{1}{2}$, d, $M = \frac{3}{2} \rightarrow M = \frac{5}{2}$, and e, $M = -\frac{5}{2} \rightarrow M = -\frac{3}{2}$. $\Delta M = 2$ transitions are as marked.

Measured values of the magnetic fields for relevant single quantum transitions were also used to predict the positions of $\Delta M = 2$ lines for the $m = -\frac{3}{2}$ pentad. As predicted by the second-order perturbation theory, the corresponding magnetic field for a $\Delta M = 2$ transition lies halfway between the fields for relevant single quantum transitions (figure 3). All the transitions are well resolved for this particular pentad. Weak $\Delta M = 2$ transitions $M_{1/2} \rightarrow M_{5/2}$ and $M_{-5/2} \rightarrow M_{-1/2}$ are also evident.

5. Conclusion

Our results for double quantum transitions of Mn^{2+} in CaO are in good agreement with predictions from second-order time dependent perturbation theory [8].

In addition to the strong $\Delta M = 2$ transitions between $M = \pm \frac{1}{2}$ and $M = \pm \frac{3}{2}$ levels of the Mn²⁺ ion, we have detected weaker double quantum transitions between $M = \pm \frac{1}{2}$ and $M = \pm \frac{5}{2}$ levels. These weaker transitions were not detectable for Mn²⁺ in MgO [8].

The phenomena of double quantum transitions may be very helpful in resolving an overlap EPR spectrum.

Acknowledgment

The CaO oxide samples were kindly supplied by Dr Yok Chen of Oak Ridge National Laboratories.

References

- [1] Kush P 1954 Phys. Rev. 93 1022
- [2] Kush P 1956 Phys. Rev. 101 627
- [3] Salwen H 1956 Phys. Rev. 101 623
- [4] Hughes W and Geiger J S 1955 Phys. Rev. 99 1842
- [5] Orton W, Auzins P and Werts J E 1960 Phys. Rev. Lett. 4 128
- [6] Shiren N S 1961 Phys. Rev. Lett. 6 168
- [7] Low W 1957 Phys. Rev. 105 793
- [8] Sorokin P P, Gelles I L and Smith W V 1958 Phys. Rev. 112 1513